Comparative Sequencing and Analysis of Multiple Desulfovibrio and Other Sulfate Reducing Species Paramvir S. Dehal^{1,2*} (PSDehal@lbl.gov), Eric J. Alm^{1,3}, Dylan Chivian^{1,2,4}, Katherine H. Huang^{1,2}, Marcin P. Joachimiak^{1,2}, Keith Keller^{1,2}, Morgan N. Price^{1,2}, Romy Chakraborty^{1,2}, Mathew W. Fields^{1,6}, Jizhong Zhou^{1,7}, David A. Stahl^{1,8}, Judy D. Wall^{1,9}, Adam P. Arkin^{1,2,4,5}, Terry C. Hazen^{1,2,4} ¹Virtual Institute for Microbial Stress and Survival, http://vimss.lbl.gov/; ²Lawrence Berkeley National Laboratory, Berkeley, CA, 94720; ³Department of Biological Engineering, MIT, Cambridge, MA, 02139; ⁴DOE Joint BioEnergy Institute, Emeryville, CA; ⁵Department of Bioengineering, University of California, Berkeley, CA, 94720; ⁶Department of Microbiology, Montana State University, Bozeman, MT 59717; ⁷Institute for Environmental Genomics, University of Oaklahoma, Norman, OK 73019; ⁸Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98195; and ⁹Department of Biochemistry, University of Missouri, Columbia, MO 65211; ## Acknowledgements This work was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL program through contract DE-AC02-05CH11231 As part of the work being done for the DOE GTL: Genomics program, the Virtual Institute for Microbial Stress and Survival (VIMSS) is sequencing multiple relatives of the environmental microbe Desulfovibrio vulgaris Hildenborough at several phylogenetic levels to aide in the analysis and annotation, as well as understanding larger questions of sulfate reduction and environmental stress response. We have sought to balance the selection of species based on the resources available for each species and the phylogenetic position the species occupies. By sequencing multiple Desulfovibrio species, we will be able to improve our predictions for genes, regulons, operons, regulatory elements, core genes, and environmental stress response genes. Sequenced genomes so far include: Desulfovibrio aespoeensis, Desulfovibrio vulgaris Miyazaki F, Desulfovibrio hanfordensis, Desulfovibrio sp. FW1012B, Desulfovibrio vulgaris DP4, Desulfovibrio vulgaris RCH1, Desulfovibrio salexigens DSM 2638, Desulfovibrio fructosovorans, Desulfovibrio desulfuricans 27774 and Desulforudis audaxviator. Environmental isolates, such as D. FW1012B, D. hanfordensis, DvDP4, DvRCH1 are critical for understanding the DOE field research sites. Other species such as D. aespoeensis play a role in geochemical radionuclei migration in the deep sub-surface. Here we describe our initial analysis of Desulfovibrio species.